
BLT-Ti64

Titanium Powder Designed for Additive Manufacturing

Ti-6Al-4V alloy has fine mechanical properties, biocompatibility and corrosion resistance, and has broad application prospects in aerospace, medical, chemical and other fields. For these applications, BLT has developed and produced high-quality BLT-Ti64 powders suitable for selective laser melting (SLM).

→ Product Features

Advanced Inert Gas Atomization process is adopted to produce BLTM powder. Combined with our optimized powder treatment process, we can provide BLT-Ti64 powder with superior quality in commercial scale.

- Low Oxygen Content
- Few Satellite Particles
- Migh Purity
- Highly Spherical
- Excellent Flowability
- High Consistency of Every Batch

→ Chemical Composition

BLT-Ti64 powder chemistry comply with ASTM B348, Grade 5, Grade 23.

The chemical composition is in compliance with standards ASTM F1580, ASTM F2924, ASTM F136, ASTM F3001.

	Chemical Composition (wt.%)										
Element	Τi	Αl	V	Fe	С	N	Н	0	Υ	Other Elements	Other Elements
Grade 5	Bal.	5.5~6.75	3.5~4.5	≤0.30	≤0.08	≤0.05	≤0.015	≤0.20	≤0.005	each≤0.10	total≤0.40
Grade 23	Bal.	5.5~6.5	3.5~4.5	≤0.25	≤0.08	≤0.03	≤0.012	≤0.13	≤0.005	each≤0.10	total≤0.40

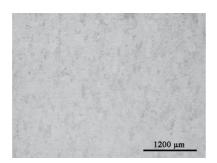
→ Particle Size Distribution and Powder Properties

Particle Size Distribution [1]	D10≥18µm, 32µm≤D50≤42µm, D90≤63µm			
Hall Flow [2]	≤40s/50g			
Apparent Density [3]	≥2.2g/cm³			
Tap Density [4]	≥2.7g/cm³			

^[1] Particle Size Distribution test according to DIN EN ISO 3923, ASTM B822. [2] Hall Flow test according to DIN EN ISO 4490, ASTM B213.

^[3] Apparent Density test according to DIN EN ISO 3923-1, ASTM B212.

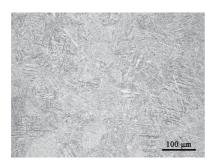
^[4] Tap Density test according to BS EN ISO 3923, ASTM B527.

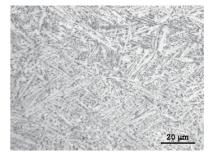

→ Printing and Heat Treatment

The BLT-Ti64 powder should be printed to AM components through selective laser melting process. Heat Treatment is used to optimize mechanical properties of the components and relieve stress. A recommended heat treatment condition is heat to 800 °C in vacuum furnace and maintain temperature for 2 hours, then cooling under argon quenching. This Material Data Sheet of BLT-Ti64 powder provides information and data for components built by BLT-S310.

→ Microstructure of the Printed Components

Porosity


The printed components from BLT-Ti64 powder show a homogenous, dense internal structure. (Porosity≤0.05%)


Porosity≤0.05%

Microstructure

Etched samples show a microstructure consist of α phase and β phase, typical for Ti-6Al-4V alloy. As a result of rapid solidification, the α and β phase is fine and distribute homogenously, leading to excellent comprehensive mechanical properties.

Microstructure (x 200 magnification)

Microstructure (x 500 magnification)

→ Typical Achievable Mechanical Properties

Material Properties		Tensile Strength [5]	Yield Strength [5] Rp _{0.2} (MPa)	Fracture Elongation [5]	Reduction of Area ^[5] Z %	Young's Modulus ^[5] E (GPa)	Hardness ^[6] HV0.5
Test Result	(XY)	1000±30	910±30	17.5±2.5	55±5	110±10	320±15
	(Z)	1000±30	950±30	17.5±2.5	55±5	110±10	320±13

→ Chemical and Physical Properties

Material Properties	Test Result				
Chemical Composition [7]	Ti (balance) Al (5.5-6.75 wt.%) V (3.5-4.5 wt.%) O (≤ 0.20 wt.%)	N (≤ 0.05 wt.%) C (≤ 0.08 wt.%) H (≤ 0.015 wt.%) Fe (≤ 0.30 wt.%)			
Surface Roughness(Ra) [8]	<10				
Relative Density (ρ) [9]	approx. 100 %				

- [7] Chemical composition analysis according to ASTM E1941-10, ASTM E2371-13, ASTM E1409-13, ASTM E1447-09.
- [8] Surface roughness test according to DIN EN ISO 4288.
- [9] The relative density is obtained by dividing the measured density by the theoretical density. The measured density test according to DIN EN ISO 3369.

→ Biological Characteristics

Corrosion Resistance

Components were printed by BLT-Ti64 powder. In a standardized test $^{(10)}$, the total metal ion release from each component into the specified solution at $(37\pm1)^{\circ}$ C [(98.6±33.8) °F] in a time period of 7d±1h is about 5µg /cm².

Tarnish Resistance

The components printed by our BLT-Ti64 powder are considered tarnish-resistant $^{\mathrm{III}}$, which means when tested in accordance with standard $^{\mathrm{III}}$, there is no more than a very minor colour change and the products of tarnish are easy to remove by gentle rubbing or brushing.

Biocompatibility

Several biological tests were conducted. And the biocompatibility of BLT-Ti64 powder was evaluated according to ISO 10993-1:2009 based on the test results. The test results are as fellows:

Evaluation Tests	Test Result		
In Vitro Cytotoxicity [12]	Nontoxicity		
Irritation and Skin Sensitization [13]	Nonirritant		
Genotoxicity [14]	Negative		
Systemic Toxicity [15]	Nontoxicity		

- [10] Corrosion resistance test according to DIN EN ISO 22674.
- [11] Tarnish resistance test according to DIN EN ISO 22674.
- [12] In vitro cytotoxicity test according to DIN EN ISO 10993-5.
- [13] Irritation and skin sensitization test according to DIN EN ISO 10993-10.
- [14] Genotoxicity test according to DIN EN ISO 10993-3.
- [15] Systemic toxicity test according to DIN EN ISO 10993-11 and DIN EN ISO 10993-11.

*It should be pointed out that test results listed above only provide to user as a reference.

The producer should evaluate the biocompatibility of the component according to a particular purpose.

- ÷86(029)-8848 5409
- +86-(0)29-88485673 ext. 8016/8017
- www.xa-blt.com/en/
- No.1000 Shanglinyuan Seventh Road, Hi-tech Zone, Xi'an City, Shaanxi Province, P.R.China 710000

YouTubeBright Laser Technologies

TikTok

@brightlaser.technologies

© 2023.10 All rights reserved by Xi'an Bright Laser Technologies Co., Ltd.